The discrete twofold Ellis–Gohberg inverse problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولDegeneracy in the Discrete Inverse Problem
3 Fibers of the Response Map 5 3.1 The Star-K Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Strip Functions and Strip Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Characterization of Function Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 The Concatenation Map . . . . . . . . . . . . . . . . . . . . ....
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملDiscrete approximation and regularisation for the inverse conductivity problem
We study the inverse conductivity problem with discontinuous conductivities. We consider, simultaneously, a regularisation and a discretisation for a variational approach to solve the inverse problem. We show that, under suitable choices of the regularisation and discretisation parameters, the discrete regularised solutions converge, as the noise level on the measurements goes to zero, to the l...
متن کاملStability of an inverse problem for the discrete wave equation
Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterpar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2017.02.072